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‘Climate and Ecosystems’, John Dunne, 16th Annual CESM Workshop, 2011.  
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‘New capabilities and new dynamical 
cores in CAM’. Mark Taylor, 16th Annual 
CESM Workshop, 2011.  
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Target Problem 

•  1/8 degree CAM, using CAM-SE dynamical core and Mozart 
tropospheric chemistry. Land model will be run on CPUs.   

• Why is acceleration needed to “do” the problem? 
–  When including all the tracers associated with Mozart atmospheric 

chemistry, the simulation is too expensive to run at high resolution 
on today’s systems.  

• What unrealized parallelism needs to be exposed? 
–  In many parts of the dynamics, parallelism needs to include levels 

and chemical constituents.  
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Profile Generation 
•  The science problem of interest could not be run at the time 

the project started because Mozart chemistry depended on 
using a latitude/longitude grid and CAM-SE uses a cubed-
sphere grid.  

• A set of jobs that spanned the aspects of this problem were 
run, which allowed us to make a performance model for the 
target problem.  

• Recently this limitation has been overcome and we can now 
run the problem of interest. The new profile confirms that our 
performance model directed us to work on the right part of 
the code (tracer advection).  
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Projected Profile of Runtime 
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Kernels extracted 

• Vertical remapping 
• Euler_step + limiter2d_zero 
•  Laplace_sphere_wk 
• Small kernels from dynamics (gradient, divergence, vorticity 

etc.), used by euler_step and laplace_sphere_wk 
•  Tendency physics before coupling (for compiler analysis, not 

run-able).  
• Chemistry implicit solver (smaller than expected % of final 

runtime, further development put on hold)  
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Method of acceleration 

• CUDA 
–  We primarily used PGI CUDA Fortran for HOMME kernels. 

• Directives 
–  Recent studies with the Cray compiler on the HOMME kernels 

show that the compiler directive approach can provide as good or 
better performance as manual tuning with CUDA Fortran.  

•  Libraries 
–  No significant math library use 
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Method of acceleration: Why? 

–  CAM-SE dynamical core has the same loop and index patterns 
appear repeatedly, which makes CUDA work tractable.    

–  Mozart chemistry code developers are likely to accommodate 
code changes. Both CUDA and directives will be explored. Implicit 
solver code is generated by a pre-processor, so GPU-specific code 
can be generated without affecting CPU version.  

–  Physics code will need to accelerated using directives if this is to 
be run on GPUs 
•  to prevent version bifurcation, involves many routines written by many 

different people who have no knowledge accelerators 
•  profile for the physics is extremely flat 
•  physics is less than 1% of target job so low priority now 
•  Directives are the only method that potentially allow one to use GPUs without 

causing unacceptable changes in the CPU base code.  
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Plan of work – what has been done? 
•  Examination of code structure and data types.  

•  Created test cases for profiling and performance model development.  

•  Created macro-kernels for some of the most time consuming parts of the code to 
enable people unfamiliar with CESM to assist with project.  

•  Created low level kernels from CAM-SE, then moved up the call tree to higher level 
kernels.  

•  Optimized vertical remapping, which improved performance on CPU and enabled 
use of the GPU.   

•  Implemented asynchronous data transfers with standalone kernels. Determined that 
overlapping data transfers with computation or leaving data on GPU is critical. 

•  Explored doing packing/unpacking for boundary exchange on GPU. This is sub-
optimal.  

•  Separated on-GPU boundary exchange (interior edges) from off-GPU boundary 
exchange, to minimize data transfers back to CPU during tracer advection.  
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CPU code:!
Loop over elements!
  Loop over advected constituents (q)!
    Loop over j!
       Loop over i!
          Loops over levels !
           all computations from quadratic_spline and!
           quadratic_spline_monotone manually inlined!
!
GPU code:!
!
Transfer element-independent data to GPU!
Create chunks of 6 elements!
!
Decompose work into thread blocks:!
 tblock=dim3(nv,nv,6) – columns associated with 6 elements!
 tgrid=dim3(qsize,1,1)  - each block has a different value of q!
!
Loop over chunks:!
 Copy data from element structure to local arrays!
 Transfer data to GPU!
 Call remap_Q_kernel<<<tgrid,tblock>>>(…)!
 Transfer results back to CPU!
 Copy data back to elem structure!
!
attributes(global) subroutine &  !
      remap_Q_kernel(Qdp,hyai,hybi,ps_v,dpdn,ps0,dt)!
!
  i  = threadIdx%x!
  j  = threadIdx%y!
  ie = threadIdx%z!
  q  = blockIdx%x!
!
 ! each thread has one column of points for one value of q!
 !
   Loops over levels!
 
     all computations from quadratic_splime and!
     quadratic_spline_monotone manually inlined!
!
end subroutine remap_Q_kernel 
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Vertical Remapping 

•  The mass and momentum variables in CAM-SE are 
conservatively remapped at the end of each time step 
following Zerroukat 2005 and 2006.  

• Computation for each column is independent of other 
columns, which immediately offers parallelism for nv x nv x 
qsize x nelem threads  

• Each kernel launch has qsize thread blocks, and each 
thread block is nv x nv x nelem threads 

• Optimal memory access patterns – each group of nv x nv 
threads accesses a contiguous memory region since level 
data is contiguous for each element and tracer  
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Plan of work – what remains to be 
done? 
•  Continue to refine profiles as inefficient code is rewritten and work on 

routines that take a significant percentage of the runtime.  
•  Optimize on-GPU boundary exchange (pack and unpack). 
•  Optimize buffers containing boundary data that need to go to CPU to 

generate MPI messages. 
•  Move up a level with GPU kernels to include data that can be left on 

GPU using new boundary exchange methods.  
•  Integrate GPU kernels into HOMME trunk (and via that, into CESM)  
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Summary 
•  The community is moving towards high-resolution modeling 

with atmospheric chemistry.  
• We have demonstrated that such a run is dominated by 

tracer advection.  
• We have demonstrated that enough parallelism exists to run 

tracer advection on the GPU.  

Additional help from 
Jim Rosinski, Mark Taylor, John Dennis, Kate Evans, Oscar 

Hernandez, Jim Schwarzmeier, Tom Court, Abdulla Bataineh 


